LaRu_xFe_{1-x}O₃ Perovskites

R. J. BOUCHARD, J. F. WEIHER, AND J. L. GILLSON

E. I. du Pont Nemours and Company, Central Research and Development Department, Experimental Station, Wilmington, Delaware 19898

Received December 10, 1976; in final form January 27, 1977

To complete a study of LaRuO₃-based phases, a series of LaRu_xFe_{1-x}O₃ solid solutions was prepared with the orthorhombic GdFeO₃-type perovskite structure. Electrical, magnetic, crystallographic, and Mössbauer data were taken. Metallic conductivity is destroyed by substitution of as little as 10% Fe for Ru. Mössbauer and magnetic data show the presence of only high-spin octahedral Fe³⁺. At the Fe-rich end, Ru decreases T_N of LaFeO₃ by $\approx 100^{\circ}$ C for every 10% of Ru.

Introduction

We have previously investigated two perovskite solid solutions based on antiferromagnetic,¹ metallic LaRuO₃; La_xSr_{1-x}RuO₃ (1) with $SrRuO_3$, a ferromagnetic metal, and $LaRu_xGa_{1-x}O_3$ (2) with $LaGaO_3$, a diamagnetic insulator. In the former case, the ferromagnetism of SrRuO₃ was destroyed at ~35 mole % La, but metallic conductivity was maintained for all La/Sr ratios. In the latter, semiconduction occurred when only 10% of the Ru was substituted by Ga, and a temperature-dependent magnetic moment was found for the Ru³⁺. The third solid-solution series, $LaRu_{r}Fe_{1-r}O_{3}$, was designed to answer the following questions: (1) Will the high conductivity of LaRuO₃ be destroyed by the introduction of a small amount of Fe³⁺ on the B site as in the Ga^{3+} case, or will the Fe^{3+} , which has unpaired d electrons, maintain conductivity over a more extended range? (2) Will the conductivity vs temperature behavior be a monotonic function of x or would discontinuous properties be observed? (3) Will a metal-semiconductor transition be observed at some critical Ru³⁺ concentra-

¹ The description of LaRuO₃ as weakly antiferromagnetic may be open to question-a theta of -30Kseems to resolve some complex magnetic behavior (2). However, Greenwood *et al.* (Abstracts of International Mössbauer Conference, Corfu, 1976) see no magnetic order in the ⁹⁹Ru Mössbauer spectrum at 4.2K.

Copyright © 1977 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain tion? (4) Will localized Fe^{3+} electrons enhance the weak antiferromagnetic Ru^{3+} - Ru^{3+} interaction? (5) How fast will Ru^{3+} decrease the strong Fe^{3+} - Fe^{3+} antiferromagnetic exchange?

We felt that a crystal-chemical, magnetic, electrical, and Mössbauer investigation would provide answers to these questions.

Experimental

Mixtures of reagent-grade oxides were ground for ~ 30 min in a Fisher automatic agate mortar and pestle under N₂ according to the following equation:

$$2 \operatorname{La}_2 O_3 + 2(1 - x)\operatorname{Fe}_2 O_3 + 3x \operatorname{Ru} O_2 + x \operatorname{Ru} \rightarrow 4 \operatorname{La} \operatorname{Ru}_x \operatorname{Fe}_{1 - x} O_3.$$

The La₂O₃ was predried at 900°C, stored in a vacuum desiccator before use, then weighed as quickly as possible. The ground oxide mixtures were pelleted in a hand press, heated to ~600°C in a silica tube under a vacuum (to remove any small amounts of H₂O and CO₂ picked up during grinding and pressing), then sealed in Pt tubes under vacuum and fired to 1350°C for ~2 days. The pellets were fairly well sintered and colored black (high Ru content) to brown (high Fe content). Standard four-probe resistivity measurements were made on the pellets

TABLE	l
-------	---

Formula	a (Å)	b (Å)	c (Å)	v (Å ³)
LaFeO3	5.5551(6)	5.5650(5)	7.8524(16)	242.75(4)
LaRu0.05Fe0.95O3	5.5608(12)	5.5653(18)	7.8591(9)	243.22(8)
LaRu _{0.1} Fe _{0.9} O ₃	5.5622(5)	5.5667(5)	7.8642(12)	243.50(4)
LaRu0.15Fe0.85O3	5.5633(13)	5.5741(8)	7.8636(16)	243.85(6)
LaRu _{0.2} Fe _{0.8} O ₃	5.5605(10)	5.5808(5)	7.8658(15)	244.09(5)
LaRu _{0.25} Fe _{0.75} O ₃	5.5667(10)	5.5804(11)	7.8704(11)	244.49(5)
LaRu _{0.4} Fe _{0.6} O ₃	5.5698(13)	5.5944(5)	7.8786(14)	245.49(5)
LaRu _{0.5} Fe _{0.5} O3	5.5676(8)	5.6054(8)	7.8829(12)	246.01(4)
LaRu _{0.6} Fe _{0.4} O ₃	5.5601(6)	5.6376(6)	7.8790(9)	246.97(3)
LaRu _{0.8} Fe _{0.2} O ₃	5.5386(4)	5.6928(4)	7.8685(7)	248.09(2)
LaRuO3	5.4944(6)	5.7789(5)	7.8548(7)	249.40(3)

LATTICE PARAMETERS VS COMPOSITION

and a Faraday balance was used to obtain magnetic data.

A Guinier-Hägg camera with KCl as an internal standard was used to determine accurate d values, which were refined by a least-quares procedure for accurate lattice parameters.

Mössbauer spectra were obtained with a NSEC-AM1 constant acceleration drive, a Reuter–Stokes Kr–CO₂ filled proportional counter, a Nuclear Data ND-180 Multichannel Analyzer in the time mode, and 15 mCi of ⁵⁷Co in a Cu-foil source. The velocity and isomer shift scales were calibrated with a NBS metallic Fe Mössbauer standard. The isomer shift of the source relative to Fe metal was 0.218 ± 0.002 mm/sec. Spectra were fit with a least-squares computer program assuming Lorentzian line shapes.

Results

Crystallographic

A complete range of single-phase LaRu_x-Fe_{1-x}O₃ solid solutions could be prepared. All compounds have the orthorhombic GdFeO₃-type structure, D_{2h}^{16} -Pbnm, Z = 4, as did the previous two solid solution series based on LaRuO₃. Our cell parameters for LaFeO₃ compare well with those in the literature (4). Lattice parameters vs x are

FIG. 1. Lattice parameters vs composition.

listed in Table I and illustrated in Fig. 1. They do not behave exactly like those in the previous solid solutions studied, e.g., there is no region where b < a, and the parameters do not vary smoothly--there are "kinks" in the curves. Otherwise, the gross features are similar to those of $LaRu_xGa_{1-x}O_3$ (2) and $La_{r}Sr_{1-x}RuO_{3}$ (1), e.g., the b axis decreases rapidly with substitution into LaRuO₃. The anomalous behavior of $LaRu_{x}Fe_{1-x}O_{3}$ is probably caused by a magnetostrictive contribution to the lattice constant, since in this composition range where the anomalies occur, the Néel temperatures rise above room temperature, where the lattice parameters are determined.

Electrical

Figure 2 shows resistivity vs temperature for the solid solutions. All are semiconducting

FIG. 2. Resistivity vs temperature as a function of composition.

except for the end member LaRuO₃. There is a fairly monotonic change from semiconducting LaFeO₃ to metallic LaRuO₃. Figures 3 and 4 and Table II show the smooth variation in room temperature resistivity and activation energy with x. Most of the plots of ρ vs T show more than one activation energy (Fig. 2)—the higher temperature activation energies are the ones plotted in Fig. 4. Breaks in ρ vs T plots for LnFeO₃-type perovskites at T_N are known in the literature (5). LaFeO₃ was not measured, but is known (5) to have $E_a = 0.22 \text{ eV}.$

The electrical properties observed are similar to those for $LaRu_xGa_{1-x}O_3$ (2). No discontinuous behavior or metal-semiconductor transition is exhibited. In addition, as with Ga^{3+} , a small amount of Fe^{3+} is sufficient to cause semiconductivity. If anything, Fe substitution destroys the metallic conductivity of $LaRuO_3$ at lower concentrations than Ga^{3+} . This is surprising, since Fe^{3+} has 5 *d*-electrons like Ru^{3+} and $LaFeO_3$

FIG. 3. Resistivity at 25°C vs composition.

FIG. 4. Activation energy vs composition.

TABLE II Electrical Data

Formula	Resistivity at 25°C (ohm-cm)	Activation energy (eV)
LaRuO ₃	5 × 10 ⁻³	~0
$LaRu_{0.9}Fe_{0.1}O_3$	3×10^{-2}	0.03
LaRu _{0.8} Fe _{0.2} O ₃	1.6 × 10 ⁻¹	0.05
$LaRu_{0.6}Fe_{0.4}O_3$	1.3	0.08
LaRu _{0.4} Fe _{0.6} O ₃	7.6	0.12
$LaRu_{0,2}Fe_{0.8}O_3$	250	0.15

is much more conductive than $LaGaO_3$, which is essentially an insulator. Since the data used in the plots were those taken above T_N , no magnetic ordering contribution to localization is likely to be important.

The data represent a good illustration of the marked increase in metal-oxygen covalence of 4d vs 3d orbitals. The metallic conductivity in all $ARuO_3$ -type perovskites presumably arises from the partially filled Ru-O π^* band. When the Ru sublattice is interrupted by even a small amount (<10%) of Fe, the metallic conductivity is destroyed, in spite of

the fact that Fe^{3+} has 5 *d*-electrons like Ru^{3+} (*d*⁵) and the unit cell volume decreases with Fe substitution.

It is interesting to compare these data with those recently published on $SrFe_xRu_{1-x}$ - O_{3-y} (6). The latter solid solutions are complicated by the presence of oxygen vacancies and the fact that measurements were done on compacted powders, not sintered samples. Nevertheless, low resistivities appear to be maintained at higher Fe concentrations than for LaFe_xRu_{1-x}O_3. This probably reflects the stronger covalency resulting when higher Ru valence states are present. This also seems to be true for the 50 % Ru⁴⁺ case in LaRu_{0.5}-Ni_{0.5}O₃ and LaRu_{0.5}Mg_{0.5}O₃, where low resistivities are observed (3).

TABLE III

MAGNETIC DATA

Formula	$\mu_{\rm Fe}{}^a$	∆T [*]
LaFe _{0.2} Ru _{0.8} O ₃	5.8 ± 0.1	300–100
LaFe _{0.4} Ru _{0.6} O ₃	5.1 ± 0.1	300–200

^{*a*} $\mu_2 = \mu_{Fe}^2 (\bar{x}_{Fe}) + \mu_{Ru}^2 (\bar{x}_{Ru})$ where \bar{x} = mole fraction. ^{*b*} Temperature interval used in μ calculation.

FIG. 5. Magnetic susceptibility of the mostly paramagnetic solid solutions.

FIG. 6. Magnetic susceptibility of the mostly antiferromagnetic solid solutions.

Magnetic

Because of the antiferromagnetic nature of these solid solutions, only those with low Fe content (and consequently low T_N) were studied for paramagnetism below room temperature. Data are shown in Table III and Fig. 5. The Fe³⁺ moments are derived assuming a Ru moment of 2.12, the average Ru moment found in the LaRu_xGa_{1-x}O₃ series (2). The moment in the 20% Fe compound is close to the 5.92 BM expected for high-spin octahedral Fe³⁺. A lower moment is found in the 40% Fe compound, but this may not be a real effect, since the straight line portion of the $1/\chi$ vs T curve is so short. In any case, the introduction of up to 40 mole %Fe does not change the magnetic properties of LaRuO₃ very dramatically—only a small increase in T_N is noted. At 60% Fe, T_N increases considerably, and although ill-defined, appears to be ≈ 300 K.

At the Fe-rich end of the series, measurements were done at higher temperatures and shown in Fig. 6. For these compounds it is more relevant to plot susceptibility, which is proportional to magnetization ($\chi = M/H$), rather than the $1/\chi$ vs T plots appropriate for paramagnets. For LaFeO₃ and LaRu_{0.1}-Fe_{0.9}O₃ there are two curves, one obtained on

FIG. 7. Néel temperature vs Ru content.

		Type 1				Type 2		
Mole $\%$ Fe	I.S.ª	$\Delta E_{\mathbf{Q}}^{\mathbf{b}}$	Hie	I.S.ª	$\Delta E_{Q^{b}}$	Hic	$RI(h)^d$	$\mathrm{RI}(A)^{e}$
5	0.442	0.278	0	I			I	
20	0.416	0.278	0	0.359	1.104	0	0.23	0.22
40	0.403	0.248	0	0.358	1.074	0	0.18	0.14
09	0.400	0.1 ± 0.2	256 ± 9	I	I	I	1	I
80	0.370	0.05 ± 0.04	485 ± 5	0.37	0.03 ± 0.02	451 ± 5	0.9	1.45
100	0.367	0.06 ± 0.01	529 ± 5	1	8448	l	1	ł
 ⁴ Isomer shift in r ^b Quadrupole spli ^c Hyperfine field i 	nm/sec relative to tting in mm/sec. n kG.) Fe metal.						

TABLE IV

^d Relative intensity vs type 1, based on peak heights. ^e Relative intensity vs type 1, based on peak areas.

⁷ For 80% Fe, ratios based on height are significantly different from those based on area. This is a strong indication that a model based on only two kinds of Fe is too simplistic. Unfortunately, the data are not good enough to unambiguously determine all the parameters of a more complex model involving a range of sites.

$LaRu_{x}Fe_{1-x}O_{3}$ perovskites

141

heating a virgin sample and one on cooling through a magnetic field. Since it is known that parasitic ferromagnetism exists for LaFeO₃, (7) a manifestation of anisotropic superexchange, cooling through $T_{\rm N}$ in a magnetic field must align this magnetization with the field.

The hysteresis results from the fact that the coercivity (from crystal anisotropy) of the parasitic magnetization component goes to zero at $T_{\rm N}$. Therefore even a small field can irreversibly magnetize all particles on cooling through $T_{\rm N}$. Further cooling continues to increase the magnetization as thermal randomization becomes less important. The same effect occurs with 10% Ru in LaFeO₃, but at a lower T_N . Finally at 20% Ru, parasitic magnetization has decreased, no hysteresis occurs, and T_N is decreased further. Note that as the temperature is lowered, the magnetization goes through a maximum, rather than increasing steadily. This appears to correspond to some more complex magnetic structure, intermediate between parasitic ferromagnetism and well-behaved antiferromagnetism. As a rough approximation, T_N decreases ~100°K for every 10% Ru. Thus, Ru^{3+} appears to be somewhat less efficient, compared to Al^{3+} in $LaAl_xFe_{1-x}O_3$, (8) in decreasing magnetic interactions on the Fe sublattice. From the susceptibility and magnetization plots, an approximate plot of $T_{\rm N}$ vs x can be constructed and is shown in Fig. 7.

Mössbauer

Mössbauer spectra were all taken at room temperature. Unfortunately, some of the compounds are magnetically ordered at room temperature, and this complicates interpretation. Nevertheless, we felt that unambiguous assignment of the Fe valence state would be possible. The data are shown in Fig. 8 and listed in Table IV. At LaFeO₃, the sixline spectra is as expected for a magnetically ordered AFeO₃ perovskite (7). At 20% Ru, the spectra show two kinds of magnetically ordered Fe³⁺, probably resulting from nonequivalent Fe^{3+} atoms at this Fe/Ru ratio (9). The data have been fit to two kinds, but a distribution over more than two is probable. The small quadrupole splitting is consistent

with the nearly cubic symmetry.² Note, however, that even if the solid solution were strictly cubic, a nonzero electric field gradient will result from the fact that all Fe atoms cannot have the same ionic environmentsome will have more Ru neighbors than others. At 40% Ru, the Néel temperature is close to room temperature, making the data too complicated to resolve. At 60 and 80% Ru, where the samples are clearly paramagnetic at room temperature, a simpler spectra results and again, at least two kinds of Fe³⁺ are indicated. The large quadrupole splitting suggests that a large deviation from cubic symmetry is present, as is supported by the crystallographic data. At a very low concentration of Fe, 5%, the spectra is consistent with only one kind of Fe^{3+} , presumably because nearly all the Fe^{3+} have all Ru nearest neighbors.

For all the solid solutions, the isomer shift is consistent with high-spin, octahedral Fe^{3+} (10).

Discussion

We are able to draw a number of conclusions from the data. Electrically, the LaRu_xFe_{1-x}O₃ system behaves much like its $LaRu_{x}Ga_{1-x}O_{3}$ counterpart-a small amount of Fe³⁺ is able to destroy the metallic conductivity of LaRu- O_3 . No discontinuous electrical behavior vs composition and no semiconductor-metal transition vs temperature is found for any composition. Mössbauer isomer shifts and high magnetic moments for the paramagnetic solid solutions identify the Fe as high-spin, octahedral Fe³⁺. Apparently the combination $Ru^{3+} + Fe^{3+}$ is more stable than $Ru^{4+} +$ Fe²⁺. Magnetically, Ru³⁺ appears to be much more effective at reducing the strength of the magnetic interactions in LaFeO₃ than Fe³⁺ is in increasing the weak antiferromagnetic interactions in LaRuO₃.

² A referee has correctly pointed out that a high unit cell symmetry does not necessarily translate to a high site symmetry. However, as shown in P. Coppens *et al.*, *Acta Cryst.* **19**, 524 (1965), the distortion in $LnFeO_3$ perovskites is borne almost entirely by the Ln^{+3} ion, while the FeO₆ octahedra are quite symmetrical.

Acknowledgments

We would like to acknowledge helpful discussions with H. S. Jarrett and the assistance of C. M. Foris of the X-ray lab.

References

- 1. R. J. BOUCHARD AND J. F. WEIHER, J. Solid State Chem. 4, 80 (1972).
- R. J. BOUCHARD, J. F. WEIHER, AND J. L. GILLSON, J. Solid State Chem. 6, 519 (1973).
- 3. F. GALASSO AND W. DARBY, Inorg. Chem. 4, 71 (1965).

- 4. M. MAREZIO AND P. D. DERNIER, Mat. Res. Bull. 6, 23 (1971).
- 5. G. V. SUBBA RAO, B. M. WANKLYN, AND C. N. R. RAO, J. Phys. Chem. Solids 32, 345 (1971).
- T. C. GIBB, R. GREATREX, N. N. GREENWOOD, AND K. G. SNOWDON, J. Solid State Chem. 14, 193 (1975).
- 7. D. TREVES, J. Appl. Phys. 36, 1033 (1965).
- 8. J. TRAFF, Phys. Status Solidi 34, K139 (1969).
- 9. See G. H. JONKER, *Physica* 22, 707 (1956) for the distribution probabilities of nearest neighbors.
- J. DANON, in "Chemical Applications of Mössbauer Spectroscopy" (V. I. Goldanskii and R. H. Herber, Eds.), p. 166, Academic Press, New York, 1968.